Affine stratifications from finite misère quotients
نویسنده
چکیده
Given a morphism from an affine semigroup Q to an arbitrary commutative monoid, it is shown that every fiber possesses an affine stratification: a partition into a finite disjoint union of translates of normal affine semigroups. The proof rests on mesoprimary decomposition of monoid congruences and a novel list of equivalent conditions characterizing the existence of an affine stratification. The motivating consequence of the main result is a special case of a conjecture due to Guo and the author on the existence of affine stratifications for (the set of winning positions of) any lattice game. The special case proved here assumes that the lattice game has finite misère quotient, in the sense of Plambeck and Siegel.
منابع مشابه
2 M ar 2 00 7 The Structure and Classification of Misère Quotients
A bipartite monoid is a commutative monoid Q together with an identified subset P ⊂ Q. In this paper we study a class of bipartite monoids, known as misère quotients, that are naturally associated to impartial combinatorial games. We introduce a structure theory for misère quotients with |P| = 2, and give a complete classification of all such quotients up to isomorphism. One consequence is that...
متن کاملThe structure and classificationof misère quotients
A bipartite monoid is a commutative monoid Q together with an identified subset P ⊂ Q. In this paper we study a class of bipartite monoids, known as misère quotients, that are naturally associated to impartial combinatorial games. We introduce a structure theory for misère quotients with |P| = 2, and give a complete classification of all such quotients up to isomorphism. One consequence is that...
متن کاملMisère quotients for impartial games
We announce misère-play solutions to several previously-unsolved combinatorial games. The solutions are described in terms of misère quotients—commutative monoids that encode the additive structure of specific misère-play games. We also introduce several advances in the structure theory of misère quotients, including a connection between the combinatorial structure of normal and misère play.
متن کامل5 D ec 2 00 6 Misère Quotients for Impartial Games
The G-values of various games, by R. K. Guy and C. A. B. Smith, introduced a broad class of impartial games and gave complete normalplay solutions for many of them. In this paper, we announce misère-play solutions to many of the games considered by Guy and Smith. They are described in terms of misère quotients—commutative monoids that encode the additive structure of specific misère-play games....
متن کاملMisère Quotients of Impartial Games
The G-values of various games, by R. K. Guy and C. A. B. Smith, introduced a broad class of impartial games and gave complete normalplay solutions for many of them. In this paper, we announce misère-play solutions to many of the games considered by Guy and Smith. They are described in terms of misère quotients—commutative monoids that encode the additive structure of specific misère-play games....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1009.2199 شماره
صفحات -
تاریخ انتشار 2010